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The suitability of applying the overlapping grid method to parallel computation of
steady and unsteady compressible inviscid flows with three-point block-tridiagonal
implicit schemes is addressed in this paper. An easily usable interface treatment
is constructed and analyzed for both steady and unsteady problems. The perfor-
mance of the method, such as convergence rate and time accuracy, can be controlled
through the overlapping width. The method needs no iteration at each time step or
modification of the Thomas algorithm for the solution of the implicit parts. In both
steady and unsteady cases a very good absolute parallel efficiency is demonstrated
for bidimensional subsonic and transonic flow computations.c© 2000 Academic Press
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1. INTRODUCTION

Parallel computation is now very important in computational fluid dynamics (CFD). The
most natural way to achieve parallelization in CFD problems is by domain decomposition
[10, 17]. This is relatively easy for explicit schemes since explicit schemes are defined
pointwisely and are inherently parallel. But for implicit schemes, for which the discrete
equations are spatially coupled, the situation is obviously more complicated. Only tridiag-
onal implicit schemes (which involve three points in each space direction) inverted by the
Thomas algorithm are considered in this paper. In high dimensions the implicit system will
be split to one-dimensional systems by approximate factorization.

The main difficulty of parallel computation for implicit schemes is how to invert the
implicit system in a parallel way. Traditionally, one uses the parallel tridiagonal solver [20],
in which the original Thomas algorithm for inverting a tridiagonal system is modified. In
this paper we use overlapping multiblock grids with time-lagging interface conditions to
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realize parallel computation. The reason to use an overlap at the interface is different here
for steady and unsteady problems.

For steady state problems, a time-lagging interface condition is obviously very simple but
normally reduces the convergence speed to a steady state. According to a study based on the
well-known normal mode analysis [6, 15], for dissipative schemes the method converges,
but very slowly with a small overlapping width. For a particular scheme, a quantitative
analysis in [21] demonstrated a very surprising result:when the overlapping width, in terms
of the number of grid points in the overlap, is equal to the CFL(Courant–Friedrich–Lewy)
number, the overlapping method converges as rapidly as the corresponding single domain
treatment. But the quantitative analysis presented in [21] was based on a particular scheme
and a particular interface treatment. We do not know whether the previous conclusion
remains true for other schemes and for other kinds of interface conditions.

For unsteady problems, a time-lagging treatment will necessarily reduce the time accuracy
near the interface. According to [11], for a discrete problem, the wave travels at finite speed.
Since the CFL number is based on the maximum wave speed (eigenvalue), it is natural that
a local perturbation (due to time-lagging) of the scheme will travel at a distance, in terms
of the number of mesh points, no larger than the CFL number at each time step. From this
remark it is possible to choose an overlapping width proportional to the CFL number and
correct the error (due to time-lagging) confined in the overlap.

The main purpose of this paper is to:

(1) reexamine the results of Ref. [21] for schemes with various dissipation properties
(strongly dissipative, moderately dissipative, and nondissipative) and for various interface
conditions;

(2) construct a new and easily parallelizable interface treatment for the unsteady
problem;

(3) apply the interface treatment to parallel computation.

The present method for both steady and unsteady problems needs no iteration at each time
step or modification of the Thomas algorithm for the solution of the implicit parts. In the
present paper we are more interested in the numerical efficiency than the parallel aspects.
For references where the parallel aspects are emphasized, see for instance [17, 18]. The
overlapping is just for the purpose of parallelization and does not involve any interpolation
in space. Once interpolation in space is used as in the case of treating complex geometry
by arbitrary grid overlapping, there exist problems such as conservation, stability, accuracy,
etc. See for instance [1, 3, 7, 16, 19, 22, 23].

The present study will be limited to three-point schemes and to hyperbolic problems.
For schemes with more than three points in space and for Navier–Stokes equations, we are
obtaining similar results which need further study.

This paper is organized as follows. In Section 2, the one-dimensional interface problem
is described using only two subdomains. The easily parallelizable interface conditions for
both steady and unsteady computations are presented. In Section 3, we analyze the inter-
face treatments. First we present a stability analysis of various interface treatments. For
steady state problems, we will also study the convergence to a steady state for schemes with
various dissipation properties and for various interface conditions. For unsteady problems
we will study the time accuracy of the proposed interface treatments, both analytically and
numerically. Section 4 is devoted to numerical experiments in two-dimensional compress-
ible flow computations. First we perform sequential computation in order to demonstrate
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the convergence for steady state problems and accuracy for an unsteady problem, with
comparison to single domain computations. Then we present PVM-based parallel compu-
tation to demonstrate that the proposed approach has a good absolute parallel efficiency.
The main conclusions are summerized in Section 5. There are also two appendixes provided
at the end of this paper. Appendix A concerns a short remark about conservation which is
not the main concern of this paper. Appendix B is a discussion of the usefulness of the
present method due to a practical point of view.

2. PRESENTATION OF THE NUMERICAL METHODS ON OVERLAPPING GRIDS

We only present the method in one dimension since its extension to two dimensions is
straightforward.

2.1. Interface Difference Approximations

Consider the following system of hyperbolic conservation laws,

wt + h(w)x = 0, t ∈ R+,−1< x < 1 (1)

with initial data,

w(x, t = 0) = w0(x), x ∈ R (2)

and suitable boundary conditions atx=±1. By hyperbolic assumption, the Jacobian matrix
C(w)= dh(w)

dw has real eigenvaluesλ(i )(w) and is diagonalizable.
When only two subdomains are considered, the computational domain is split asDu=
{x : x< 1

2lo},Dv ={x : − 1
2lo< x} with an overlapping lengthlo. The boundariesx=− 1

2lo
andx= 1

2lo of the overlap are called interfaces. A uniform mesh size ofδx is assumed in each
subdomain, so that the cell centers in the left and right subdomains are respectively given
by x(u)j = 1

2lo+ ( j − 0.5)δx, x(v)j =− 1
2lo+ ( j + 0.5)δx. The overlap(− 1

2lo,
1
2lo) contains

Lo grid points for both subdomains. We will callLo the overlapping width (in terms of
the number of grid points). The case of more subdomains can be similarly described. For
convenience, the analysis is essentially based on two subdomains. But in the application
more subdomains are considered.

The numerical solutions are denoted byun
j =w(x(u)j , nδt)( j ≤ 0) in Du and vn

j =
w(x(v)j , nδt)( j ≥ 0) in Dv, whereδt is the time step. In each subdomain, the system (1)
is approximated by a difference scheme in conservation form,

L1un+1
j = −σ( f n

j+1/2− f n
j−1/2

)
, j ≤ −1 (3)

L1vn+1
j = −σ(gn

j+1/2− gn
j−1/2

)
, j ≥ 1. (4)

Here1un+1
j = un+1

j − un
j ,1v

n+1
j = vn+1

j − vn
j denote the time increments;f j+1/2, gj+1/2

are numerical fluxes consistent with the exact flux functionh(w); σ is the ratio betweenδt
andδx; andL is a three-point implicit operator. For parallel computation, we always use
the same scheme in each subdomain.

2.2. Interface Conditions for Steady State Problems

In order to independently solve the difference equations in each subdomain as required
by parallel computation, we need to use a time lagging of the interface values.
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FIG. 1. Interface condition for steady problems.

2.2.1. Time-lagging interface conditions.An implicit scheme involves an explicit stage
(depending on values atn and lower) and implicit stage (depending on values atn+ 1). One
necessarily lags in time the interface values atn+ 1. But for the explicit stage, one can use
the value atn (no time lagging) or the value atn− 1 (time lagging). This leads to several
combinations (see Fig. 1).

Now let us present these possibilities more precisely. Assume everything is known at time
level n. Then we can compute the explicit stages (right-hand sides) of (3)–(4). Let us just
concentrate on (3). To invert the operator (matrix) on the left-hand side (implicit stage) of (3),
we need some condition on1un+1 at the left-hand boundary which we get as we would for
a single domain case, and some condition on1un+1 at the right-hand boundary (interface),
which we could either take as1un+1

0 =1vn
Lo−1 (I1) or as1un+1

0 = 0 (I2). Solving gives
us un+1 (andvn+1) at interior points. Finally defineun+1

0 via eitherun+1
0 = vn

Lo−1 (E1) or
un+1

0 = vn+1
Lo−1 (E2). For convenience, we still denoteun

0 as the interface value used in the
explicit stage, and1un+1

0 or un+1
0 as the value used in the implicit stage. Since each of the

explicit and implicit stages involves two possibilities, we have in total 4 possibilities, which
we summarize as

(combinations) explicit stage, implicit stage

(E1× I1) un
0 = vn−1

Lo−1, 1un+1
0 = 1vn

Lo−1 (5)

(E2× I2) un
0 = vn

Lo−1, 1un+1
0 = 0 (6)

(E1× I2) un
0 = vn−1

Lo−1, 1un+1
0 = 0 (7)

(E2× I1) un
0 = vn

Lo−1, 1un+1
0 = 1vn

Lo−1 (8)

which can also be written as

(combinations) explicit stage, implicit stage

(E1× I1) un
0 = vn−1

Lo−1, un+1
0 = vn

Lo−1 (9)

(E2× I2) un
0 = vn

Lo−1, un+1
0 = vn

Lo−1 (10)

(E1× I2) un
0 = vn−1

Lo−1, un+1
0 = vn−1

Lo−1 (11)

(E2× I1) un
0 = vn

Lo−1, un+1
0 = 2vn

Lo−1− vn−1
Lo−1. (12)

The interface condition defined by (5) or (9) has the particular feature that the interface value
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lags in time equally at each level of the scheme and will be called thetotally time-lagging
interface condition.

In the interface condition defined by (6) or (10), the time lagging occurs only at the
implicit level. We will call this thepartially time-lagging condition.

The interface condition defined by (7) or (11) uses a value atn− 1 to define the value at
n+ 1 and will be called theover-time-lagging condition.

The interface condition defined by (8) or (12) has a first-order accuracy (locally second
order). According to Gustafsson [9], the boundary (or interface) treatment can be one order
less accurate than the interior difference equation, without dropping the overall order of
accuracy. Thus the overall time accuracy for a second order interior treatment will be still
second order for this interface condition. As a result, we will call it thetime-accurate
time-lagging condition.

The interface conditions forv should be similarly defined as

(combinations) explicit stage, implicit stage

(E1× I1) vn
0 = un−1

−Lo+1, 1vn+1
0 = 1un

−Lo+1 (13)

(E2× I2) vn
0 = un

−Lo+1, 1vn+1
0 = 0 (14)

(E1× I2) vn
0 = un−1

−Lo+1, 1vn+1
0 = 0 (15)

(E2× I1) vn
0 = un

−Lo+1, 1vn+1
0 = 1un

−Lo+1. (16)

2.2.2. Standard and nonstandard interface conditions.The interface conditions derived
above are not all standard. In the standard definition, the interface value at timen+ 1 is
obtained from the value at timen augmented by the time increment. Precisely, after defining
1un+1

0 for the solution of the implicit stage,un+1
0 (which is to be used in the next time step)

should be defined as

un+1
0 = un

0 +1un+1
0 .

There is no difficulty to check that the totally time-lagging condition is standard but the
partially, over-, and time-accurate interface conditions are nonstandard. Only the standard
interface treatment can be directly analyzed through the stability theory. However, nonstan-
dard treatments, which are as simple as the standard treatment, are often used by engineers
and deserve a study here.

2.3. Interface Treatment for Unsteady Problems

For unsteady problems, the time accuracy of the interface treatment is very important.
But a time-lagging interface treatment, which is not accurate in time, is convenient for an
independent solution of the implicit difference schemes, as required by parallel computation.
The main idea here is to use a time-lagging treatment; the error caused by this time-lagging
is corrected, at each time step, through an additional interpolation which we call projection.
The method proposed here is based on the fact that the main part of the numerical wave
should travel at a distance (in terms of the number of mesh points) no larger than the
CFL number at each time step. We therefore use a time-lagging interface condition and an
overlapping widthLo= 2(CFL+ 1). At each time step the error produced at the interfaces by
time-lagging will spread over CFL mesh points is each subdomain. Consider for instance
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FIG. 2. Interface condition for unsteady problems.

CFL= 2 (see Fig. 2). After inverting the implicit system with a time-lagging interface
condition, the solution is polluted atj =−1,−2 in the left subdomain and atj = 1, 2
in the right subdomain. But the solutions atj ≤−3 (left subdomain) and atj ≥ 3 (right
subdomain) are not (much) polluted. We then project the unpolluted solutions atj = 3, 4
(right subdomain) to the polluted pointsj =−2,−1 (left subdomain), and the unpolluted
solutions atj =−4,−3 (left subdomain) to the polluted pointsj = 1, 2 (right subdomain).
The interface treatment by overlapping/projection can now be summarized as follows:

(1) At each time leveln, compute the explicit and implicit stages of the scheme in
each subdomain by using one of the following time-lagging interface conditions

(combinations) explicit stage, implicit stage

(E1× I1) un
0 = vn−1

Lo−1, 1un+1
0 = 1vn

Lo−1 (17)

(E2× I2) un
0 = vn

Lo−1, 1un+1
0 = 0 (18)

(E1× I2) un
0 = vn−1

Lo−1, 1un+1
0 = 0 (19)

(E2× I1) un
0 = vn

Lo−1, 1un+1
0 = 1vn

Lo−1 (20)

for u0 and

(combinations) explicit stage, implicit stage

(E1× I1) vn
0 = un−1

−Lo+1, 1vn+1
0 = 1un

−Lo+1 (21)

(E2× I2) vn
0 = un

−Lo+1, 1vn+1
0 = 0 (22)

(E1× I2) vn
0 = un−1

−Lo+1, 1vn+1
0 = 0 (23)

(E2× I1) vn
0 = un

−Lo+1, 1vn+1
0 = 1un

−Lo+1 (24)

for v0.
(2) Correct the errors by projecting the unpolluted solutions to the polluted points in

the overlapp= Lo/2 

un+1
0 = vn+1

Lo−1 vn+1
0 = un+1

−Lo+1

un+1
−1 = vn+1

Lo−2 vn+1
1 = un+1

−Lo+2
...

...

un+1
−p+1 = vn+1

Lo−p vn+1
p−1 = un+1

−Lo+p.

(25)
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(3) Go to (1) for the next time step.

The first condition in (25) seems unuseful since it is quickly modified by (17)–(20) in
the next time step. However, it should be kept if at the present time step one needs to output
the results. Similarly as for the steady case,

• the interface condition defined by (17), (21), and (25) will be called thetotally
time-lagging overlapping/projection condition;
• the interface condition defined by (18), (22), and (25) will be called thepartially

time-lagging overlapping/projection condition;
• the interface condition defined by (19), (23), and (25) will be called theover-time-

lagging overlapping/projection condition;
• the interface condition defined by (20), (24), and (25) will be called thetime-accurate

time-lagging overlapping/projection condition.

3. ANALYSIS OF THE INTERFACE TREATMENTS

The stability, the convergence speed for steady state problems, the time accuracy for
unsteady problems, and the conservation are factors to be taken into account for the interface
treatment. Conservation is not the major concern of this paper, so we are satisfied with giving
a simple remark in Appendix A.

All the analyses will be based on the linear equationut +aux = 0 with a> 0. In the
present paper we do not consider schemes with more than three points in space. Thus the
(linear) difference equation (3) can be written as

a−11un+1
j−1 + a01un+1

j + a11un+1
j+1= b−1un

j−1+ b0un
j + b1un

j+1, (26)

where the coefficientsa−1, a0, a1, b−1, b0, b1, are scheme-dependent. The difference
scheme (4) is supposed to have the same form as (3).

We will consider three typical schemes,

1un
j +

1

2
βσ 2a2

(
1un

j+1− 21un
j +1un

j−1

)
= −1

2
σa
(
un

j+1− un
j−1

)+ 1

2
σ 2a2

(
un

j+1− 2un
j + un

j−1

)
, Lerat scheme (27)

1un
j + βσa

(
1un

j −1un
j−1

) = −σa
(
un

j − un
j−1

)
, implicit upwind scheme (28)

1un
j +

1

2
σa
(
1un

j+1−1un
j−1

)− 1

2
σµ
(
1un

j+1− 21un
j +1un

j−1

)
= −1

2
σa
(
un

j+1− un
j−1

)+ 1

2
σµ
(
un

j+1− 2un
j + un

j−1

)
, backward Euler scheme.

(29)

For convenience, we will denoteλ= σa. The Lerat scheme [12] is a centered dissipative
scheme with a variable dissipation controlled byβ with β ≤− 1

2. For β =− 1
2 the Lerat

scheme is slightly dissipative and for−1≤β ≤− 1
2 its dissipation is proportional to|β|.

The upwind scheme is inherently very dissipative.
The backward Euler scheme is not dissipative. In order to have some dissipation, we

have added a numerical viscosity whose coefficient isµ≥ 0. Thus the three schemes cover
almost all the typical cases of three-point schemes.
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3.1. Stability Analysis

The stability in the sense of Gustafsson, Kreiss, and Sundstr¨om (GKS) [6] of the totally
time-lagging interface treatment was already analyzed in [14] where the following result
was proved:

PROPOSITION3.1. Consider the totally time-lagging interface condition. When the sch-
eme is dissipative, the interface tretment is always stable. When the scheme is not dissipative,

then the interface treatment is GKS-stable for odd Lo and unstable for even Lo.

The case of the nonstandard conditions on overlapping grids has not yet been studied. In
order to apply the GKS theory to each nonstandard interface treatment, we must define an
equivalent interface condition which is standard and which yields the same solution as the
original treatment.

Now we transform the nonstandard interface treatment to equivalent standard ones. Let
us concentrate onu0. This can be simply obtained by combining the interface condition at
j = 0 and the difference scheme (3) atj =−1, yielding a new relation which we call the
equivalent interface condition.

Now rewrite the linear difference equation atj =−1 as

(
a−11un+1

−2 + a01un+1
−1

)− (b−1un
−2+ b0un

−1

) = b1un
0 − a11un+1

0 . (30)

Only the right-hand side of (30) is (directly) related to the interface condition. Introduce
the interface conditions (6)–(8) into the right-hand side of (30) and subtract the resulting
equation from (30). We obtain the equivalent interface conditions

(E2× I2) b1un
0 − a11un+1

0 = b1v
n
Lo−1 (31)

(E1× I2) b1un
0 − a11un+1

0 = b1v
n−1
Lo−1 (32)

(E2× I1) b1un
0 − a11un+1

0 = (b1− a1)v
n
Lo−1+ a1v

n−1
Lo−1 (33)

which are used in the analysis.
Similarly, if we rewrite the difference equation atj = 1 for v as

(
a01v

n+1
1 + a11v

n+1
2

)− (b0v
n
1 + b1v

n
2

) = b−1v
n
0 − a−11v

n+1
0 (34)

then the corresponding equivalent interface conditions are

(E2× I2) b−1v
n
0 − a−11v

n+1
0 = b−1un

−Lo+1 (35)

(E1× I2) b−1v
n
0 − a−11v

n+1
0 = b−1un−1

−Lo+1 (36)

(E2× I1) b−1v
n
0 − a−11v

n+1
0 = (b−1− a−1)u

n
−Lo+1+ a−1un−1

−Lo+1. (37)

Let us briefly present the GKS-stability analysis suitable for interface problems with
three-point schemes. It consists in considering the behaviour of normal mode solutions
defined by

un
j = znκ j

u û0, j ≤ 0; vn
j = znκ j

v v̂0, j ≥ 0, (38)
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wherez∈C and|z| ≥1, andκu, κv are roots of the following characteristic equation related
to the internal difference scheme (26):

(z− 1)
(
a−1κ

−1
u + a0+ a1κ

1
u

) = b−1κ
−1
u + b0+ b1κ

1
u . (39)

For|z| ≥1, the characteristic equation (39) has two rootsκ1 andκ2 with |κ1|< 1 and|κ2|> 1.
Only the rootκ2, which ensures the solution to be bounded whenj→−∞, is used in the
normal mode solution foru. The characteristic equation forv is the same as (39) and has
therefore the same roots. Only the rootκ1, which ensures the solution to be bounded when
j→∞, is used in the normal mode solution forv. Now the normal mode solutions (38)
are more explicitly written as

un
j = znκ

j
2 û0, j ≤ 0; vn

j = znκ
j

1 v̂0, j ≥ 0. (40)

Inserting the normal mode solution (40) into the interface condition leads to

M(z, κ1, κ2)(û0, v̂0)
t = 0,

whereM(z, κ1, κ2) is a 2× 2 matrix. The overlapping interface problem is called GKS-
stable if and only if detM 6= 0 for all |z| ≥1. Equivalently, if the assumption detM(z)= 0
leads to max(|z|)<1, then the problem is GKS-stable.

For convenience, let us definer, αu, andαv by

r = κ1

κ2
, αu = a1

b1
, αv = a−1

b−1
.

For dissipative schemes, we have|r |< 1 when|z| ≥1. See [14].
The determinants of the matrixM for various time-lagging (TL) interface conditions are

found to be

totally TL detM = z2− r Lo−1 (41)

partially TL detM = [1− αu(z− 1)][1 − αv(z− 1)] − r Lo−1 (42)

over TL detM = [1− αu(z− 1)][1 − αv(z− 1)]z2− r Lo−1 (43)

time-accurate TL detM = 1− αu(z− 1)

(1− αu)+ αuz−1

1− αv(z− 1)

(1− αv)+ αvz−1
− r Lo−1. (44)

With the exception of the totally time-lagging condition, the other conditions have deter-
minants depending on the coefficients of the scheme. Thus the stability conclusion will be
scheme-dependent.

PROPOSITION3.2. For the Leart scheme(27) with β =−1,

(a) the interface problem with the totally time-lagging condition is unconditionally
GKS-stable;

(b) the interface problem with the partially time-lagging condition is GKS-stable for
λ>1 and GKS-unstable forλ≤ 1;

(c) the interface problem with the over time-lagging condition is GKS-stable forλ>1
and GKS-unstable forλ≤ 1;

(d) the interface problem with the time-accurate time-lagging condition is GKS-
unstable ifλ is very large and if Lo is finite.
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Proof. Forβ =−1, we have

αu = λ

1− λ, αv = − λ

1+ λ.

Besides, the Lerat scheme is dissipative so that|r |< 1 for all |z| ≥1.

(a) Since the Lerat scheme is dissipative, stability follows according to Proposition
3.1.

(b) Introducing the expressions forαu andαv into (42) and assuming detM = 0, we
find [

1− λ

1− λ(z− 1)

][
1+ λ

1+ λ(z− 1)

]
= r Lo−1

from which we obtain the eigenvalues

z= ±
√

1− (1− r Lo−1)

(
1− 1

λ2

)
.

Obviously, ifλ>1, then|z|< 1 since|r |< 1. As a result, the interface problem is GKS-
stable forλ>1. Forλ= 1, we havez=±1 so that the problem is GKS-unstable. A numeri-
cal procedure shows|z|> 1 whenλ<1. For example, ifλ= 0.5, thenz=±2.

(c) Introducing the expressions forαu andαv into (43) and assuming detM = 0, we
find

z2

(
z2− 1

λ2

)
=
(

1− 1

λ2

)
r Lo−1.

The end of the proof can be done similarly as for case (b).
(d) Introducing the expression forαu andαv into (44) and assuming detM = 0, we

find that forλ→∞ and for finite values ofLo,

z2

(2− 1/z)2
→ 1.

One of the roots of the above equation is−1−√2 so that the interface problem is unstable
for very largeλ. j

Remark. (a) It is surprising that the partially and over time-lagging condition are GKS-
stable forλ>1 and unstable for smallλ. One would prefer to use this condition since for
implicit schemes we useλ>1. However, if we solve a system such as the Euler equations
in gas dynamics, different eigenvalues of the Jacobian matrix correspond to different values
of λ. Even if the largestλ is greater than 1, the smallest one would be still less than 1 so
that the problem would be unstable.

(b) Numerical experiments show that the interface treatment with the time-accurate
time-lagging condition is stable with smallλ or largeLo.

PROPOSITION3.3. For the Lerat scheme(27) with β =− 1
2,

(a) the interface problem with the totally time-lagging condition is unconditionally
GKS-stable;

(b) the interface problem with the partially time-lagging condition is GKS-unstable
for largeλ.
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Proof. (a) The Lerat scheme is dissipative forβ =− 1
2 so that GKS-stability follows

according to Proposition 3.1.
(b) Forβ =− 1

2, we have

αu = 1

2

λ

1− λ, αv = −1

2

λ

1+ λ.

Besides, the Lerat scheme is dissipative so that|r |< 1 for all |z| ≥1. Introducing the ex-
pressions forαu andαv into (42) and assuming detM = 0, we find[

1− 1

2

λ

1− λ(z− 1)

][
1+ 1

2

λ

1+ λ(z− 1)

]
= r Lo−1

from which we obtain the eigenvalues

z= 1± 2

√
1− (1− r Lo−1)

(
1− 1

λ2

)
.

Forλ→∞, z= 1± 2
√

r Lo−1 so that max(|z|)>1. As a result, the problem is GKS-unstable
for largeλ. j

PROPOSITION3.4. For the upwind scheme(28), the interface problem is GKS-stable for
all the interface conditions(totally time-lagging,partially time-lagging,over-time-lagging,
and time-accurate time-lagging).

Proof. The upwind scheme involves only two space points in the scalar case and does not
need the condition foru0. The condition forv0 can be viewed as a pure Dirichlet condition
so that stability follows from solvability. j

The stability analysis can be done more in detail. However, the above analysis is sufficient
enough to yield the following conclusion:

Conclusion1. Only the totally time-lagging condition ensures GKS-stability (scheme-
independent provided that the scheme be dissipative). The others are only conditionally
stable or have an unstable stability range.

3.2. Linear Convergence Study for the Steady State Problem

A preliminary convergence study was already conducted in [21], where the quantitative
analysis was limited to three-point dissipative schemes and to the totally time-lagging
interface condition. Here we want to consider other kinds of schemes and the nonstandard
time-lagging interface conditions.

3.2.1. Method for analysis.Like [8, 21], the convergence rate can be studied through
normal mode analysis or eigenvalue analysis. The former is suitable for qualitative analysis
and the latter for quantitative analysis. Both are relatively easy for the standard interface
condition. But for the nonstandard interface treatment, we should use the equivalent standard
ones. Here we are only interested in quantitative analysis.

Obviously, the equivalent interface condition involves two time levels for the partially
time-lagging condition (Eqs. (31), (35)), but three levels in time for the over-time-lagging
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condition (Eqs. (32), (36)) and time-accurate time-lagging condition (Eqs. (33), (37)). For
the three-level case, caution must be paid for the eigenvalue analysis.

Let us begin with the two-level case. In the multidomain case, the eigenvalue problem is
obtained by introducingun

j = znφ
(u)
j andvn

j = znφ
(v)
j (z ∈ C) into the difference equations

and the equivalent standard interface condition, yieldingzM1Y=M2Y whereM1 andM2

are two real matrices, andY is a column vector of componentsφ(u)j , j =−1,−2, . . . ,−Nu

and φ(v)j , j = 1, 2, . . . , Nv. There are in totalNu+ Nv eigenvalueszσ . The eigenvalue
problem for the single domain case can be defined similarly. LetP(z)= zM1−M2. Let
U ={z : detP(z)= 0}. If U lies strictly inside the unit circle, then convergence is guaran-
teed, and the convergence rate is given byρ=max{|z|, z ∈ U }. For convenience, we use
ρo to denoteρ for the overlapping treatment, andρs for the corresponding single domain
treatment.

The three-level case can be similarly done with minor adaptation. It consists in intro-
ducing an intermediate variable as done in the usual Cauchy-stability analysis for three-
level schemes. Just for illustration, consider (32). Now introduce an additional variable
wn= vn−1

Lo−1 to the condition (32) so that the latter reduces to

b(u)1 un
0 − a(u)1 1un+1

0 = b(v)−1w
n. (45)

The definition for the additional variable can be rewritten as

wn+1 = vn
Lo−1. (46)

The complete system, now involving only two time levels and defined by the interior
difference equations, interface conditions rewritten as (45), and the additional relation (46),
can be used to do convergence study in a similar way as above.

To reach a prescribed degree of convergence, the number of time iterationsnc and the
total CPU timetc can be estimated by

nc = C′

ln ρ
, tc = C′′

ln ρ
No,

whereC′ andC′′ are constants depending only on the required convergence degree, andNo

is the total number of mesh points. The number of additional points due to overlapping is
factored into the calculation oftc.

Similarly as in [21], we can use the overlapping efficiency

εo = tc(overlapping)− tc(single domain)

tc(single domain)

to measure the performance of the overlapping treatment. The overlapping efficiency mea-
sures the change of CPU time by overlapping with respect to the corresponding single
domain treatment. In comparison with the single domain treatment, the overlapping case
consumes−100εo% more time whenεo< 0 while it consumes 100εo% less time when
εo> 0.

3.2.2. Influence of the dissipation of the interior schemes.In all the cases we use
CFL= 6. The conclusions with other CFL numbers are similar. Here we only consider
the totally time-lagging conditions. The results to be displayed are based on the eigenvalue
analysis.
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TABLE I

Influence of the Dissipation on the Convergence Speed

β =− 1
2

β =−1

Lo ρo εo ρo εo

2 0.904 0.062 0.84 −1.152
4 0.909 −0.097 0.686 −0.034
6 0.904 −0.085 0.625 0.13
8 0.904 −0.132 0.628 0.0825

10 0.904 −0.19 0.631 0.0329
12 0.902 −0.207 0.634 −0.018
14 0.903 −0.223 0.637 −0.072
16 0.901 −0.222 0.641 −0.126

ρs= 0.905 ρs= 0.69

Note.Lerat scheme with CFL= 6.

Table I gives the results forβ =− 1
2 andβ =−1. The case ofβ =−1 was already studied

in [21]. In this case there is an optimal overlapping width which turns out to be equal
to the CFL number. Whenβ =− 1

2, for which the scheme is only slightly dissipative, the
overlapping efficiency is a decreasing function of the overlapping width so that the optimal
overlapping width isLo= 2.

Table II shows the results for the implicit upwind scheme. We remark that for upwind
schemes the overlapping efficiency is a decreasing function of the overlapping width. As a
result, the optimal overlapping width isLo= 2 (the shortest overlapping width).

Table III displays the results for the Backward Euler scheme with and without artifi-
cial dissipation (controlled byµ). We remark that whenµ= 0 for which the scheme is
nondissipative,ρo is larger than 1 for all (even)Lo. Whenµ= 0.1 for which the scheme
is slightly dissipative and makes the problem slightly elliptic, the problem converges, the
optimal overlapping width isLo= 2.

3.2.3. Convergence study for nonstandard treatments.Let us begin with the Lerat
scheme.

TABLE II

Convergence Speed for the Implicit Upwind Scheme with CFL = 6

β = 0.5 β = 1

Lo ρo εo ρo εo

2 0.636 −0.064 0.217 0.005
4 0.639 −0.126 0.216 −0.042
6 0.643 −0.200 0.227 −0.128
8 0.63 −0.199 0.225 −0.172

10 0.63 −0.195 0.222 −0.213
12 0.63 −0.266 0.23 −0.29
14 0.63 −0.288 0.25 −0.41
16 0.63 −0.375 0.25 −0.48

ρs = 0.618 ρs = 0.219
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TABLE III

Convergence Speed for the Backwind Euler Scheme with CFL = 6

µ = 0 µ= 0.1

Lo ρo εo ρo εo

2 1.15 −∞ 0.943 0.011
4 1.067 −∞ 0.943 −0.043
6 1.14 −∞ 0.944 −0.1
8 1.09 −∞ 0.946 −0.205

10 1.087 −∞ 0.946 −0.238
12 1.085 −∞ 0.947 −0.335
14 1.065 −∞ 0.945 −0.330
16 1.10 −∞ 0.946 −0.41

ρs = 1 ρs = 0.944

First consider the partially time-lagging condition. The results for three differentβ are
displayed in Table IV. Whenβ =− 1

2, ρo is larger than 1 for allLo. As a result, the interface
treatment does not allow for convergence (in fact unstable). Whenβ =−0.6, ρo is larger than
1 for small overlapping width and is below 1 forLo≥ 6. Thus there is a cut-off overlapping
width allowing for convergence. Whenβ =−1, the interface problem is always convergent.

Now consider the over-time-lagging condition. The results for three differentβ are dis-
played in Table V. We remark that the results are very similar to those with the partially
time-lagging condition. The difference is minor. For example, whenβ =−0.6, the cut-off
overlapping length for the over time-lagging condition is 2 while in the case of the partially
time-lagging condition the cut-off overlapping length isLo= 4.

Finally consider the time-accurate time-lagging condition. The results for three different
β are displayed in Table VI. The interface treatment is nonconvergent not only forβ =−0.5
andβ =−0.6, but also forβ =−1 whenLo is small. Thus the convergence property of the
time-accurate time-lagging condition is very poor.

Now we consider the nonstandard interface conditions for the upwind scheme. The results
for β = 0.75 andβ = 1 are respectively displayed in Tables VII and VIII. Forβ = 0.75, the
nonstandard treatments behave similarly and they have a convergence speed lower than the
totally time-lagging treatment. In any case the overlapping grid method has a convergence
speed lower than the single domain case. Forβ = 1, the nonstandard treatments have a

TABLE IV

Convergence Speed for the Partially Time-Lagging Condition

Lo ρo(β = − 1
2
) ρo(β = −0.6) ρo(β = −1.0)

2 2.08 1.62 0.8466
4 1.335 1.0073 0.70
6 1.33 0.944 0.626
8 1.33 0.944 0.629

10 1.33 0.944 0.632

ρs = 0.905 ρs = 0.66 ρs = 0.69

Note.Lerat scheme with CFL= 6.
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TABLE V

Convergence Speed for the Over Time-Lagging Condition

Lo ρo(β =− 1
2
) ρo(β =−0.6) ρo(β =−1.0)

2 1.57 1.322 0.920
4 1.33 0.996 0.844
6 1.33 0.944 0.781
8 1.33 0.944 0.751

10 1.33 0.944 0.732

ρs= 0.905 ρs= 0.66 ρs= 0.69

Note. Lerat scheme with CFL= 6.

TABLE VI

Convergence Speed for the Time-Accurate Time-Lagging Condition

Lo ρo(β =− 1
2
) ρo(β =−0.6) ρo(β =−1.0)

2 3.047 2.649 1.872
4 1.896 1.786 1.408
6 1.471 1.182 0.990
8 1.33 1.080 0.801

10 1.33 1.003 0.780

ρs= 0.905 ρs= 0.66 ρs= 0.69

Note. Lerat scheme with CFL= 6.

TABLE VII

Convergence Speed for Various Interface Treatments

Lo Totally TL Partially TL Over TL Time-accurate TL

2 0.165 0.334 0.334 0.334
4 0.167 0.334 0.334 0.334
6 0.163 0.334 0.334 0.334
8 0.165 0.334 0.334 0.334

10 0.162 0.334 0.334 0.334
ρs= 0.137

Note. Implicit upwind scheme with CFL= 6 andβ = 0.75.

TABLE VIII

Convergence Speed for Various Interface Treatments

Lo Totally TL Partially TL Over TL Time-accurate TL

2 0.217 0.214 0.226 0.226
4 0.216 0.219 0.206 0.228
6 0.227 0.226 0.216 0.231
8 0.225 0.221 0.217 0.238

10 0.222 0.231 0.220 0.246
ρs= 0.219

Note. Implicit upwind scheme with CFL= 6 andβ = 1.
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similar convergence speed as the totally time-lagging treatment. The convergence speed of
the overlapping treatment is almost the same as the single domain case.

3.2.4. Summary of conclusions.In [21], we have obtained the following surprising
conclusion for the Lerat scheme:

Conclusion2. For the Lerat scheme withβ =−1, the overlapping treatment with the
totally time-lagging condition has an optimal overlapping width which is close to the CFL
number. Besides, the overlapping efficiency is positive near the optimal overlapping width.

We are interested in whether such a result has some generality. The above analysis leads
to the following new conclusions.

Conclusion3. For (two-point) upwind schemes, the overlapping treatment with the
totally time-lagging condition has its optimal overlapping width equal toLo= 2. As a
result, the best convergence rate corresponds to the shortest overlapping width. Besides, the
convergence speed is generally lower than the single domain treatment.

Conclusion4. When the difference schemes are nondissipative, the overlapping sch-
eme is nonconvergent or unstable.

Conclusion5. When the interface treatment is defined by the nonstandard conditions,
the overlapping scheme has a limited stability domain and the convergence speed is generally
lower than the standard treatment.

Thus the dissipation of the difference schemes, a correct time-lagging, and a correct
choice of the overlapping width are very important for a good convergence rate.

3.3. Accuracy of the Unsteady Problem

3.3.1. Accuracy analysis.First consider the standard interface treatment (totally time-
lagging condition). The key point of the overlapping/projection interface treatment is based
on the finite speed of a numerical wave. Consider a time accurate scheme for the transport
equationut +aux = 0. If the scheme has apth order accuracy, then the numerical solution
ū satisfies the modified (or equivalent) equation

ūt + aūx = Cδt p + o[δt p], (47)

whereC is finite and depends on the specific scheme.
At the time stepn, let the numerical solution be given bȳun(x). Then the numerical

solution atn+ 1 becomes

ūn+1 = ūn(x − aδt)+ R (48)

with R= ∫ x−aδt
x (Cδt p + o[δt p])dτ =O[δt p+ 1].

Equation (48) clearly shows that a numerical wave, within the error of the order of the
truncation error of the scheme, travels at a distance equal toaδt at each time step. Since
the mesh size isδx, this distance is equal toaδt/δx in terms of the number of mesh points
(ignoring the discussion whenaδt/δx is not an integer). By definition,aδt/δx=CFL. Thus
we have obtained the following conclusion:
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Conclusion6. A numerical wave, within the error of the order of the truncation error
of the scheme, travels at a distance equal to CFL in terms of the number of mesh points. As
a result, the overlapping/projection method using the time-lagging condition maintains the
order of accuracy of the interior scheme.

Now consider the nonstandard interface conditions. We only consider the partially and
time-accurate time-lagging conditions. The over-time-lagging condition is obviously less
interesting for unsteady problems.

Let us consider scheme (4) for the transport equationut +aux = 0 and begin with the
partially time-lagging condition. Starting from the instantn, let ej be the difference of the
time accurate solution of the problem using for example a time accurate interface condition
(or a single domain treatment) and the numerical solution with the partially time-lagging
condition. Obviously, the explicit stages of both treatments are the same since the value at
n is not lagged in the partially time-lagging treatment. As a result,ej satisfies the equation1

Lej = 0, j ≥ 1; e0 = 1u−Lo+1,

wheree0=1u−Lo+1 is the error at the interface caused by time lagging.
Consider for instance the Lerat scheme, for which the equation forej is given by

ej + 1

2
βσ 2a2(ej+1− 2ej + ej−1) = 0.

The general solution of the above equation is

ej = c1κ
j

1 + c2κ
j

2 ,

whereκ1 andκ2 are the roots of the characteristic equation

κ + 1

2
βσ 2a2(κ2− 2κ + 1) = 0.

The root with an absolute value larger than 1 should be excluded since atj→∞ the solution
remains bounded. The acceptable solution is found to be

ej = 1u−Lo+1

(
1− 1

βσ 2a2
−
√

1

β2σ 4a4
− 2

βσ 2a2

) j

which reduces to

ej = 1u−Lo+1

(
1−
√

2

σa

) j

for β =−1 and for sufficiently largeσa (=CFL). At j = σa (=CFL),

ej = 1u−Lo+1

(
1−
√

2

σa

)σa

→ e−
√

21u−Lo+1 ≈ 0.241u−Lo+1 = 0.24[δt ] (49)

1 In the case of the totally time-lagging condition, where the interface value atn also lags in time, the explicit
stage is also affected so thatLej 6= 0 at j = 1. In this case, it is substantially more complicated to estimateej than
to perform an error analysis using the modified equation.



GRID OVERLAPPING FOR PARALLEL COMPUTATIONS 19

for sufficiently large CFL. As a result, the error was reduced to 24% of the original one at
a distancej =CFL. Besides,|ej | is a decreasing function ofj .

Similarly, for the upwind scheme withβ = 1,

ej = 1u−Lo+1

(
(1/2)σa

1+ (1/2)σa

) j

.

At j = σa (=CFL),

ej = 1u−Lo+1

(
(1/2)σa

1+ (1/2)σa

)σa

→ e−21u−Lo+1 ≈ 0.141u−Lo+1 = 0.14[δt ] (50)

for sufficiently large CFL. As a result, the error was reduced to 14% of the original one at
a distancej = CFL. The absolute error|ej | is a decreasing function ofj .

Now consider the time-accurate time-lagging condition, for whichej satisfies the equation

Lej = 0, j ≥ 1; e0 = 1un+1
−Lo+1−1un

−Lo+1 = O[δt2],

wheree0=1un+1
− Lo+1−1un

−Lo+1 is the error caused by time lagging.
Similarly as above, we obtain

ej ≈ 0.24
(
1un+1
−Lo+1−1un

−Lo+1

) = 0.24O[δt2] (51)

for the Lerat scheme withβ =−1 and

ej ≈ 0.14
(
1un+1
−Lo+1−1un

−Lo+1

) = 0.14O[δt2] (52)

for the upwind scheme withβ =−1.

Conclusion7. For the partially time-lagging condition, the time lagging induces a first
order perturbation at a distancej =CFL away from the interface and for the time-accurate
time-lagging condition, this perturbation is second order. The errors atj <CFL caused by
time-lagging are larger than the error atj =CFL (see (49), (50), (51), and (52)) and will be
eliminated by the projection step. The errors atj >CFL due to time-lagging will be smaller
than those atj =CFL.

3.3.2. Numerical test with time refinement.The above accuracy analysis does not give
information for the overall order of accuracy. In order to check whether the overlapping/
projection interface treatment maintains the overall order of accuracy of the interior differ-
ence scheme, we use the Lerat scheme (which is second order accurate) to solve the inviscid
Burgers equation

wt +
(

1

2
w2

)
x

= 0, 0< x < 1

with the initial data

w(x, 0) = x.
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The exact solution is

w(x, t) = x

1+ t
.

In each computation, we fix the CFL number. Time refinement is done in order to measure
the order of accuracy. Thel2-errore is defined by

e=
√∑

j |ej |2
N

,

whereej is the difference between the numerical solution and the exact solution atj , and
N is the total number of mesh points.

Three cases are considered: single domain computation (for which the error is denoted
eSD), bidomain computation, and 4-domain computations. In the case of multidomain com-
putations, we test all the four possibilities:

(1) totally time-lagging overlapping/projection condition for which the error is de-
notedeTTL;

(2) partially time-lagging overlapping/projection condition for which the error is de-
notedePTL;

(3) over-time-lagging overlapping/projection condition for which the error is denoted
eOTL;

(4) time-accurate time-lagging overlapping/projection condition for which the error
is denotedeTATL.

Table IX displays the results for bidomain computation with CFL= 6. We remark that
similarly as in the single domain case, the multidomain computations maintain the overall
second order accuracy independently of the choice of the interface conditions. The over-
time-lagging condition produces an error obviously larger than the other conditions.

Table X displays the results for bidomain computation with CFL= 10. The results are
very similar to the case of CFL= 6. The numerical errors are slightly larger than the case
with CFL= 6. The multidomain computation yields results very close to the single domain
computation except when the over-time-lagging condition is used.

Tables XI and XII display the results for 4-domain computation with CFL= 6 and
CFL= 10. Obviously, the multidomain computation with the time-accurate time-lagging
condition produces a result very close to the single domain case. When the totally and par-
tially time-lagging conditions are used, the numerical errors are obviously larger than the

TABLE IX

l2-Error at t = 3 of Bidomain Computations Compared to Single Domain

Computation with CFL = 6

δt eSD eTTL ePTL eOTL eTATL

0.1 1.506E-04 1.308E-04 1.335E-04 1.321E-04 1.357E-04
0.075 9.519E-05 9.702E-05 9.841E-05 1.078E-04 9.168E-05
0.05 5.052E-05 4.999E-05 5.088E-05 5.390E-05 4.796E-05
0.025 1.247E-05 1.273E-05 1.291E-05 1.460E-05 1.216E-05
0.0125 4.322E-06 4.867E-06 4.936E-06 6.133E-06 4.268E-06
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TABLE X

l2-Error at t = 3 of Bidomain Computations Compared to Single

Domain Computation with CFL = 10

δt eSD eTTL ePTL eOTL eTATL

0.1 1.609E-04 1.908E-04 2.093E-04 3.298E-04 1.396E-04
0.075 1.136E-04 9.403E-05 9.768E-05 1.119E-04 8.683E-05
0.05 5.830E-05 6.221E-05 6.296E-05 7.146E-05 5.811E-05
0.025 1.386E-05 1.460E-05 1.493E-05 1.775E-05 1.326E-05
0.0125 4.356E-06 4.892E-06 4.910E-06 6.448E-06 4.267E-06

single domain result, but the results are still acceptable. The over-time-lagging condition
yields the largest error.

Conclusion8. The time-accurate time-lagging condition is as accurate as the single
domain treatment in any case. The over-time-lagging condition produces the largest error
in any case.

4. NUMERICAL EXPERIMENTS FOR THE COMPRESSIBLE EULER EQUATIONS

4.1. Physical Problem and Numerical Methods

4.1.1. Physical problem.Present calculations are based on the two-dimensional Euler
equations

wt + f (w)x + g(w)y = 0 (53)

with

w =


ρ

ρu
ρv

ρE

 , f (w) =


ρu

ρu2+ p
ρuv

(ρE + p)u

 , g(w) =


ρv

ρvu

ρv2+ p

(ρE + p)v


and assuming a perfect gas law,

p = (γ − 1)ρ

[
E − 1

2
(u2+ v2)

]
,

TABLE XI

l2-Error at t = 3 of 4-Domain Computations Compared to Single

Domain Computation with CFL = 6

δt eSD eTTL ePTL eOTL eTATL

0.1 1.506E-04 1.247E-04 1.342E-04 1.496E-04 1.190E-04
0.075 9.519E-05 9.421E-05 9.973E-05 1.207E-04 8.199E-05
0.05 5.052E-05 5.125E-05 5.415E-05 6.610E-05 4.433E-05
0.025 1.247E-05 1.531E-05 1.620E-05 2.396E-05 1.164E-05
0.0125 4.322E-06 7.183E-06 7.476E-06 1.221E-05 4.189E-06
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TABLE XII

l2-Error at t = 3 of 4-Domain Computations Compared to Single Domain

Computation with CFL = 10

δt eSD eTTL ePTL eOTL eTATL

0.075 1.136E-04 9.493E-05 1.034E-04 1.286E-04 7.893E-05
0.05 5.830E-05 6.428E-05 6.795E-05 8.837E-05 5.185E-05
0.025 1.386E-05 1.800E-05 1.930E-05 2.911E-05 1.244E-05
0.0125 4.356E-06 7.585E-06 7.957E-06 1.339E-05 4.143E-06

whereρ, p, u, v, andE denote respectively the density, the pressure, the velocity Cartesian
components, and the total energy;γ = 1.4 is the specific heat ratio.

We always consider a bidimensional symmetric flow around a fixed (steady) or oscillating
(unsteady) NACA0012 airfoil.

The steady flow is either transonic with a free-stream Mach numberM∞= 0.85, or
subsonic with a free-stream Mach numberM∞= 0.536.

The unsteady flow we consider is produced by a horizontal oscillation of the NACA0012
airfoil [13]. The free-stream Mach number is maintained to be constantM∞= 0.536. The
airfoil oscillates horizontally with a velocity given by

ua = −M0a∞ sin(kt),

whereM0= 0.327,a∞ is the sound speed at infinity, andk= 0.185 is the reduced frequency.

4.1.2. Difference approximations.System (53) is approximated by two different im-
plicit schemes.

The first is the implicit centered scheme of Lerat [12] of second-order accuracy,

1w̃i+1/2, j = −1t (δ1 f/1x + µ1µ2δ2g/1y)ni+1/2, j

f̃ i+1/2, j =
[
(µ1 f )n + 1

2
(µ1A)n1w̃

]
i+1/2, j

1 ˜̃wi, j+1/2 = −1t (µ1µ2δ1 f/1x + δ2g/1y)ni, j+1/2

˜̃gi, j+1/2 =
[
(µ2g)n + 1

2
(µ2B)n1 ˜̃w

]
i, j+1/2

1w
expl
i, j = −1t (δ1 f̃ /1x + δ2 ˜̃g/1y)i, j

1w∗i, j −
1

2
(1t/1x)2δ1

[(
µ1An

)2
δ1(1w

∗)
]

i, j
= 1wexpl

i, j

1wi, j − 1

2
(1t/1y)2δ2

[(
µ2Bn

)2
δ2(1w)

]
i, j
= 1w∗i, j

wn+1
i, j = wn

i, j +1wi, j ,

whereA= d f (w)/dw andB= dg(w)/dw are the Jacobian matrices, andδs,µs for s= 1, 2
are spatial operators such that forφi, j defined at the mesh pointx= i1x andy= j1y,

(δ1φ)i, j = φi+1/2, j − φi−1/2, j , (δ2φ)i, j = φi, j+1/2− φi, j−1/2

(µ1φ)i, j = 1

2
(φi+1/2, j + φi−1/2, j ), (µ2φ)i, j = 1

2
(φi, j+1/2+ φi, j−1/2).
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This scheme is always linearly stable inL2 and dissipative except whenAor B is singular.
It involves 3× 3 points at leveln and 5 points at leveln + 1 and leads to the solution of
block-tridiagonal linear systems. Due to its own dissipative properties, this scheme is always
used without artificial viscosity as in [12].

The second one is the implicit version of Roe’s upwind scheme,

f̃ i+1/2, j =
[
µ1 f + 1

2

∣∣A(R)∣∣δ1w

]n

i+1/2, j

g̃i, j+1/2 =
[
µ2g+ 1

2

∣∣B(R)∣∣δ2w

]n

i, j+1/2

1w
expl
i, j = −1t (δ1 f̃ /1x + δ2g̃/1y)i, j

1w∗i, j +
1

2
(1t/1x)

{
δ1
[∣∣A(R)∣∣nδ1(1w

∗)
]

i, j + δ1
[
Anµ1(1w

∗)
]

i, j

} = 1wexpl
i, j

1wi, j + 1

2
(1t/1y)

{
δ2
[∣∣B(R)∣∣nδ2(1w)

]
i, j + δ2

[
Bnµ2(1w)

]
i, j

} = 1w∗i, j
wn+1

i, j = wn
i, j +1wi, j ,

where A(R) and B(R) are the well-known Roe averages of the JacobiansA= d f (w)/dw
andB= dg(w)/dw.

The Lerat scheme will be used for both steady and unsteady computations. The Roe
scheme will be used only for steady state computations.

4.1.3. Implementation.Both schemes have been implemented on a structured mesh by
using a finite-volume formulation and with the movement of the grid taken into account
conservatively.

On a rigid wall, the slip condition is applied and the pressure is computed from a lin-
ear combination of the discrete form of thex- and y-momentum equations to obtain a
conservative approximation of the normal momentum equation. On an external subsonic
inflow boundary, we prescribe the free-stream direction, the entropy, and the enthalpy. On
an external subsonic outflow boundary we prescribe the pressure.

Domain spliting is done automatically. A structured grid can be split intonx × ny subdo-
mains with an overlapping ofLo mesh points normal to each interface. Since an approximate
factorization is used, the computation of the implicit part in each direction is similar to a
one-dimensional problem. As a result, the interface conditions for both steady and unsteady
problems can be straightforwardly realized as in the one-dimensional case.

A coarse grid and a fine grid will be considered. In the single domain case, the coarse
grid is a 124× 25 C-mesh, and the fine grid is a 247× 49 C-mesh based on the coarse grid.
In multidomain computations, the computational domain is split into 2, 4, or 8 subdomains.
For the present mesh where the grid number in the second direction (which is equal to 25
or 49) is small, we have only used horizontal splitting. A splitting in both directions will
certainly increase the communication time in comparison with a splitting in one direction.
But this negative aspect will become less significant when the mesh size is large as in the
case of real applications.

For steady state computations, we use the totally time-lagging interface conditions. For
the unsteady problem, we have used both of the totally time-lagging and time-accurate
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FIG. 3. Mach contours for the steady state problem.M∞ = 0.85, CFL= 5. Left, single domain. Right, 8
domains withLo= 4. Lerat scheme on the fine grid.

time-lagging overlapping/projection interface treatments withLo= 2(CFL+ 1). Both lead
to solutions very close to the single domain computation. As a result, we will only display
the results obtained with the totally time-lagging condition compared with the single domain
results.

4.2. Sequential Computations

The sequential computation is for the purpose of testing the convergence speed and time
accuracy of the overlapping grid method.

4.2.1. Steady problem.Here we consider the transonic flow case withM∞= 0.85 com-
puted with the Lerat scheme and the Roe scheme. Only the results obtained with the fine
grid will be displayed.

The Mach contours computed with the Lerat scheme and CFL= 5 are displayed in Fig. 3.
Here the 8-domain results are compared to the single domain computation. In the multido-
main case, the interfaces are shown through dashed lines. Each pair of closed lines defines
the boundaries of an overlap. For the Lerat scheme with CFL= 5, the convergence curves
(the time evolution of the root-mean-square residualR2 for the discrete density equation)
of the overlapping computation compared with the single domain one are displayed in
Figs. 4–6. When there are only two subdomains, the multidomain treatment converges as
rapidly as the single domain one even with a small overlapping width. But for a large number
of subdomains, the convergence speed of the overlapping treatment (with a time-lagging
interface condition) is slightly smaller than the single domain one if the overlapping width
is small. When the overlapping width reaches the CFL number, both treatments almost have
the same convergence speed.

The Mach contours computed with the Lerat scheme and CFL= 10 are displayed in
Fig. 7. Here the 8-domain results are compared to the single domain computation. In the
multidomain case, the interfaces are shown through dashed lines as before. For the Lerat
scheme with CFL= 10, the convergence curves of the overlapping computation compared
with the single domain one are displayed in Figs. 8–10. When there are only two subdomains,
the multidomain treatment converges as rapidly as the single domain one even with a small
overlapping width. But for a large number of subdomains, the convergence speed of the
overlapping treatment (with a time-lagging interface condition) is significantly smaller than
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FIG. 4. Dependence of the convergence histories on the overlapping width for the steady state problem with
2 subdomains.M∞ = 0.85, CFL= 5. Lerat scheme on the fine grid.

FIG. 5. Dependence of the convergence histories on the overlapping width for the steady state problem with
4 subdomains.M∞ = 0.85, CFL= 5. Lerat scheme on the fine grid.
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FIG. 6. Dependence of the convergence histories on the overlapping width for the steady state problem with
8 subdomains.M∞ = 0.85, CFL= 5. Lerat scheme on the fine grid.

the single domain one if the overlapping width is small. Both treatments almost have the
same convergence speed forLo≥CFL.

The Mach contours computed with the Roe scheme and CFL= 20 are displayed in
Fig. 11. Here the 8-domain results are compared to the single domain computation. In the
multidomain case, the interfaces are shown through dashed lines. The convergence curves
of the overlapping computation compared with the single domain one are displayed in
Figs. 12–14 for CFL= 20. The multidomain treatment converges as rapidly as the single
domain one with a small overlapping width. The convergence speed becomes poor when
the overlapping width becomes very large (Lo≥ 20).

FIG. 7. Mach contours for the steady state problem.M∞ = 0.85, CFL= 10. Left, single domain. Right, 8
domains withLo= 10. Lerat scheme on the fine grid.
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FIG. 8. Dependence of the convergence histories on the overlapping width for the steady state problem with
2 subdomains.M∞ = 0.85, CFL= 10. Lerat scheme on the fine grid.

FIG. 9. Dependence of the convergence histories on the overlapping width for the steady state problem with
4 subdomains.M∞ = 0.85, CFL= 10. Lerat scheme on the fine grid.
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FIG. 10. Dependence of the convergence histories on the overlapping width for the steady state problem with
8 subdomains.M∞ = 0.85, CFL= 10. Lerat scheme on the fine grid.

4.2.2. Unsteady problem.For the unsteady case, we use CFL= 5. The overlapping
width isLo= 2(CFL+ 1)= 12. The pressure coefficientCp

2 distributions around the chord
are displayed in Figs. 15, 16 for single domain, bidomain, 4-domain, and 8-domain com-
putations. We remark that the overlapping/projection interface treatments give almost the
same solutions as the single domain one. This can be further made clear through the Mach
contours shown in Figs. 17, 18. As a result, the very simple overlapping/projection interface
treatment gives a good time accuracy.

4.3. Parallel Computation

The parallel computation is done on a network of workstations using PVM (parallel
virtual machines, see [17] for details and for references). Here we will measure the parallel
performance by using the parallel efficiency, here defined as

Ep = cpu(1)

n cpu(n)
,

wherecpu(k) is the CPU time (including the communication time) computed withk pro-
cessors. The parallel performance can also be measured by the speedupcpu(1)/cpu(n). It
is also possible to use the wall clock timeTwc to measure parallel efficiency:

Ē p = Twc(1)

nTwc(n)
.

2 Defined asCp= (p− p∞)/(1/2)ρ∞V2
∞ whereρ∞, p∞, andV∞ denote, respectively, the density, the pressure,

and the velocity at infinity.
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FIG. 11. Mach contours for the steady state problem.M∞ = 0.85, CFL= 20. Left, single domain. Right, 8
domains withLo= 10. Roe scheme on the fine grid.

Normally some of the processors of the parallel machine are occupied by different tasks
(different users may occupy a part of the processors), thus the wall clock time necessarily
contains an extra part due to synchronization. As a result, we must have the relation

Ep > Ēp (54)

and this relation will be confirmed by our numerical experiments. Normally it is the CPU
time (not the wall clock time) that is charged in the cost. The use of CPU times (including
computation and communication) to measure parallel efficiency is more appropriate here to

FIG. 12. Dependence of the convergence histories on the overlapping width for the steady state problem with
2 subdomains.M∞ = 0.85, CFL= 20. Roe scheme on the fine grid.
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FIG. 13. Dependence of the convergence histories on the overlapping width for the steady state problem with
4 subdomains.M∞ = 0.85, CFL= 20. Roe scheme on the fine grid.

FIG. 14. Dependence of the convergence histories on the overlapping width for the steady state problem with
8 subdomains.M∞ = 0.85, CFL= 20. Roe scheme on the fine grid.
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FIG. 15. Comparison of the single domain treatment, 2-domain, 4-domain, and 8-domain treatments. Pressure
coefficient distribution on the wall.

FIG. 16. Comparison of the single domain treatment, 2-domain, 4-domain, and 8-domain treatments. Pressure
coefficient distribution on the wall.
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FIG. 17. Comparison of the single domain treatment (left) and 8-domain treatment (right). Mach contours at
kt= 90◦.

study the numerical efficiency of the algorithm. But we will display results based on both
CPU times and wall clock times.

In each case we give the parallel efficiency and the CPU time or wall clock time required
to reach a prescribed convergence (the residual drops 4 orders) for steady state computations
or to reach the prescribed instants for the unsteady problem.

4.3.1. Steady problem.Both the Lerat scheme and the implicit Roe scheme will be used
to do steady state computations here. Let us begin with the Lerat scheme.

First we consider the subsonic case (M∞= 0.536) with CFL= 5. The results are dis-
played in Tables XIII–XV. From Table XIII, which displays the parallel efficiency based
on the CPU time and on the coarse grid, we see that when the number of subdomains is
small, the absolute parallel efficiency is very high (Ep> 0.93). This is even so with a small
overlapping width. When the number of subdomains is equal to 8, the optimal overlap-
ping width is approximately equal to CFL, for which the parallel efficiency is the highest
(Ep= 0.97). Table XIV gives the results based on the wall clock time. The parallel efficien-
cies based on the wall clock time are slightly smaller than those based on the CPU time, as
can be expected from (54). In any case, the parallel efficiency is a decreasing function of
the number of subdomains. Table XV displays the results obtained with the fine grid. Com-
paring Table XV with Table XIV, when the number of subdomains is 8 and whenLo≤ 4,

FIG. 18. Comparison of the single domain treatment (left) and 8-domain treatment (right). Mach contours at
kt= 120◦.



TABLE XIII

Parallel Efficiency Ep (Based on the CPU Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo cpu Ep cpu Ep cpu Ep

2 726 1.074 343 1.135 209 0.931
4 805 0.968 380 1.024 200 0.972
8 833 0.935 405 0.961 214 0.910

For single domaincpu= 1558

Note. Steady problem withM∞ = 0.536. Computed with the coarse grid, Lerat scheme, and CFL= 5.

TABLE XIV

Parallel Efficiency Ēp (Based on the Wall Clock Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo Twc Ē p Twc Ē p Twc Ē p

2 777 1.027 401 0.995 274 0.727
4 867 0.920 439 0.908 271 0.735
8 884 0.902 496 0.804 342 0.582

For single domainTwc= 1595

Note. Steady problem withM∞ = 0.536. Computed with the coarse grid, Lerat scheme, and CFL= 5.

TABLE XV

Parallel Efficiency Ēp (Based on the Wall Clock Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo Twc Ē p Twc Ē p Twc Ē p

2 2137 1.195 1120 1.140 698 0.915
4 2504 1.020 1151 1.110 715 0.893
6 2566 0.995 1213 1.053 736 0.868
8 2587 0.991 1253 1.019 764 0.835

10 2705 0.944 1337 0.955 786 0.812
12 2736 0.934 1401 0.912 801 0.797
16 2763 0.924 1464 0.872 866 0.737

For single domainTwc= 5108

Note. Steady problem withM∞ = 0.536. Computed with the fine grid, Lerat scheme, and CFL= 5.

TABLE XVI

Parallel Efficiency Ep (Based on the CPU Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo cpu Ep cpu Ep cpu Ep

2 2013 0.982 1067 0.926 751 0.658
4 2030 0.974 1066 0.927 599 0.825
8 2084 0.948 1053 0.939 617 0.800

For single domaincpu= 3954 .

Note.Steady problem withM∞ = 0.85. Computed with the coarse grid, Lerat scheme, and CFL= 5.

33
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TABLE XVII

Parallel Efficiency Ep (Based on the Wall Clock Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo Twc Ē p Twc Ē p Twc Ē p

2 2129 0.949 1259 0.803 951 0.531
4 2156 0.937 1239 0.816 780 0.647
8 2198 0.919 1261 0.801 859 0.588

For single domainTwc = 4041 .

Note.Steady problem withM∞ = 0.85. Computed with the coarse grid, Lerat scheme, and CFL= 5.

the parallel efficiency is near 0.90 for the fine grid while it is below 0.75 for the coarse
grid.

Now we consider the transonic case (M∞= 0.85) with CFL= 5. The parallel efficiencies
(based on the CPU time and the wall clock time on the coarse grid) are displayed in
Tables XVI and XVII. The results are very similar to the case of subsonic flows. When
the number of subdomains is 8, the optimal overlapping width isLo= 4 (close to the CFL
number), for which the parallel efficiency is the highest (Ep= 0.825).

Now we consider the transonic case (M∞= 0.85) with a higher CFL number. The parallel
efficiencies for CFL= 10 (based on the CPU time on the coarse grid, wall clock time on
the coarse grid, and wall clock time on the fine grid) are displayed in Tables XVIII–XX.
The results are still very similar to the case of subsonic flows. When the fine grid is used
and when the number of subdomains is 8, the optimal overlapping width isLo= 8 (close
to CFL), for which the parallel efficiency is the highest (Ep= 0.707). In this case the
overlapping efficiencies are smaller than those with CFL= 5, especially when the number
of subdomains is large. The reason is that with CFL= 10, the optimal overlapping width is
large with respect to the number of mesh points in each subdomain.

In the above computations we do not use a CFL number higher than 10. This is because
the Lerat scheme is unstable for the two-dimensional Euler equations when CFL is very
large (see [12]). In order to do computations with higher CFL numbers, we have also used
the implicit Roe scheme.

The parallel efficiencies for CFL= 20 andM∞= 0.535 (based on the CPU time and the
wall clock time) are displayed in Tables XXI and XXII. Unlike the Lerat scheme, here the

TABLE XVIII

Parallel Efficiency Ep (Based on the CPU Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo cpu Ep cpu Ep cpu Ep

2 1062 1.023 589 0.924 356 0.763
4 1089 0.998 605 0.897 369 0.735

10 1099 0.988 614 0.884 375 0.723
20 1255 0.866 736 0.738 477 0.568

For single domain,cpu= 2173 .

Note.Steady problem withM∞ = 0.85. Computed with the coarse grid, Lerat scheme, and CFL= 10.
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TABLE XIX

Parallel Efficiency Ep (Based on the Wall Clock Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo Twc Ē p Twc Ē p Twc Ē p

2 1108 0.986 642 0.851 415 0.658
4 1143 0.956 678 0.806 445 0.614

10 1141 0.957 714 0.766 494 0.553
20 1302 0.839 909 0.601 748 0.365

For single domainTwc = 2189 .

Note.Steady problem withM∞ = 0.85. Computed with the coarse grid, Lerat scheme, and CFL= 10.

TABLE XX

Parallel Efficiency Ep (Based on the Wall Clock Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo Twc Ē p Twc Ē p Twc Ē p

2 7120 0.853 3987 0.762 2330 0.652
4 6412 0.947 3860 0.787 2271 0.669
6 6374 0.953 4041 0.752 2427 0.626
8 6378 0.952 3529 0.861 2149 0.707

10 6286 0.966 3574 0.850 2224 0.683
12 6430 0.945 3711 0.818 2309 0.658
14 6458 0.941 3823 0.795 2421 0.627
20 6538 0.929 3932 0.773 2849 0.533

For single domainTwc= 12150

Note.Steady problem withM∞ = 0.85. Computed with the fine grid, Lerat scheme, and CFL= 10.

TABLE XXI

Parallel Efficiency Ep (Based on the CPU Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo cpu Ep cpu Ep cpu Ep

2 2365 0.732 1190 0.728 609 0.711
4 2386 0.726 1209 0.716 627 0.690

10 2436 0.711 1274 0.680 688 0.629
20 2513 0.689 1378 0.629 786 0.551
30 2595 0.668 1473 0.588 867 0.499

For single domain CPU= 3466

Note.Steady problem withM∞ = 0.535. Computed with the fine grid, Roe scheme, and CFL= 20.
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TABLE XXII

Parallel Efficiency Ep (Based on the Wall Clock Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo Twc Ē p Twc Ē p Twc Ē p

2 2391 0.730 1228 0.711 654 0.667
4 2414 0.723 1259 0.693 684 0.648

10 2462 0.709 1373 0.636 788 0.554
20 2537 0.688 1541 0.566 964 0.454
30 2641 0.661 1710 0.511 1144 0.333

For single domainTwc= 3494

Note.Steady problem withM∞ = 0.535. Computed with the fine grid, Roe scheme, and CFL= 20.

optimal overlapping width is always equal toLo= 2. The overlapping efficiencies for large
overlapping width are unacceptable.

The parallel efficiencies for CFL= 20 andM∞= 0.85 (based on the CPU time and
the wall clock time) are displayed in Tables XXIII and XXIV. Similarly as above, here
the optimal overlapping width is always equal toLo= 2. The overlapping efficiencies are
slightly larger than those obtained with the subsonic flow case.

The performance of the overlapping treatment with the implicit Roe scheme seems to
be independent of the CFL number. To see that, we display in Tables XXV and XXVI
the parallel efficienciesEp andĒ p obtained with CFL= 10 for M∞= 0.85. They are very
close to the parallel efficiencies obtained with CFL= 20 (see Tables XXIII and XXIV).

4.3.2. Unsteady problem.For the overlapping/projection interface treatment, the com-
munication time required to project the unpolluted values to the polluted points is propor-
tional to the overlapping width and thus the CFL number. Thus the CFL number should be
small with respect to the mesh size in each subdomain.

Only the Lerat scheme is used for unsteady flow computations. Three CFL numbers are
used: CFL= 2, CFL= 5, and CFL= 8. The corresponding overlapping widths are given
by Lo= 6, 12, 18, respectively. The parallel efficiencies based on the CPU time and on the
coarse grid are displayed in Tables XXVII, XXVIII, and XXIX. When CFL is relatively

TABLE XXIII

Parallel Efficiency Ep (Based on the CPU Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo cpu Ep cpu Ep cpu Ep

2 4021 1.001 2029 0.994 1071 0.942
4 4072 0.991 2079 0.970 1110 0.908

10 4156 0.971 2181 0.925 1189 0.848
20 4682 0.861 2584 0.781 1475 0.683
30 4881 0.826 2783 0.725 1623 0.621

For single domain CPU= 8067

Note.Steady problem withM∞ = 0.85. Computed with the fine grid, Roe scheme, and CFL= 20.
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Parallel Efficiency Ep (Based on the Wall Clock Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo Twc Ē p Twc Ē p Twc Ē p

2 4074 0.998 2093 0.972 1151 0.884
4 4120 0.987 2164 0.939 1209 0.841

10 4200 0.968 2349 0.866 1361 0.747
20 4726 0.860 2889 0.704 1809 0.562
30 4968 0.819 3230 0.630 2139 0.475

For single domainTwc= 8133

Note.Steady problem withM∞ = 0.85. Computed with the fine grid, Roe scheme, and CFL= 20.

TABLE XXV

Parallel Efficiency Ep (Based on the CPU Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo cpu Ep cpu Ep cpu Ep

2 6110 0.994 3099 0.980 1590 0.955
4 6164 0.985 3154 0.963 1642 0.924

10 6305 0.963 3329 0.912 1811 0.838
20 6750 0.900 3739 0.812 2162 0.702

For single domain CPU= 12145

Note.Steady problem withM∞ = 0.85. Computed with the fine grid, Roe scheme, and CFL= 10.

TABLE XXVI

Parallel Efficiency Ep (Based on the Wall Clock Time) vs Overlapping WidthLo

2 domains 4 domains 8 domains

Lo Twc Ē p Twc Ē p Twc Ē p

2 6177 0.991 3195 0.958 1706 0.897
4 6235 0.982 3283 0.932 1788 0.856

10 6372 0.961 3585 0.853 2073 0.738
20 6812 0.899 4173 0.733 2650 0.577

For single domainTwc= 12243

Note.Steady problem withM∞ = 0.85. Computed with the fine grid, Roe scheme, and CFL= 10.

TABLE XXVII

Parallel Efficiency Ep (Based on the CPU Time) vs the

Number of Subdomains

90◦ 120◦ 150◦

cpu cpu cpu Ep

2 domains 2061 2748 3435 0.981
4 domains 1060 1414 1768 0.953
8 domains 578 771.8 964 0.873
Single domain 4036 5390 6726

Note.Unsteady problem withLo= 2(CFL+ 1)= 6. Lerat scheme on
the coarse grid.
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TABLE XXVIII

Parallel Efficiency Ep (Based on the CPU Time) vs

the Number of Subdomains

90◦ 120◦ 150◦

cpu cpu cpu Ep

2 domains 864 1151 1440 0.942
4 domains 471 628 786 0.862
8 domains 279 372 465 0.728
1 domain 1627 2168 2711

Note. Unsteady problem withLo= 2(CFL+ 1)= 12. Lerat
scheme on the coarse grid.

small with respect to the number of mesh points in each subdomain, the (absolute) parallel
efficiency is sufficiently high since the interface treatment is very simple.

Table XXX displays the parallel efficiencies based on the wall clock time and on the coarse
grid, computed withLo= 2(CFL+ 1)= 12. As in the steady case, the parallel efficiencies
based on the wall clock time are slightly smaller than those based on the CPU time.

Table XXXI displays the parallel efficiencies based on the wall clock time and on the fine
grid, computed withLo= 2(CFL+ 1)= 12. As in the steady case, the parallel efficiencies
based on the fine grid are larger than those based on the coarse grid.

4.4. Conclusions of the Numerical Results

The numerical experiments based on the two dimensional Euler equations yield the
following conclusions:

(1) For the Lerat scheme and the steady state problem, when the number of subdomains
is small, the optimal overlapping width is close toLo= 2. When the number of subdomains
is equal to 8, we indeed obtain an optimal overlapping width close to CFL, for which the
parallel efficiency takes its largest value. This result confirms the linear study which is
based on a scalar 1D equation. The role of approximate factorization, exterior boundary
treatments, nonuniform mesh sizes, etc., are however not taken into account in the linear
analysis. As in the linear study where we sometimes obtain the same convergence speed as

TABLE XXIX

Parallel Efficiency Ep (Based on the CPU Time) vs

the Number of Subdomains

90◦ 120◦ 150◦

cpu cpu cpu Ep

2 domains 564 753 941 0.893
4 domains 324 432 540 0.776
8 domains 204 271 340 0.617
Single domain 1006 1342 1681

Note.Unsteady problem withLo= 2(CFL+ 1)= 18. Lerat scheme
on the coarse grid.
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TABLE XXX

Parallel Efficiency Ep (Based on the Wall Clock Time) vs

the Number of Subdomains

90◦ 120◦ 150◦

Twc Twc Twc Ē p

2 domains 856 1141 1426 0.943
4 domains 519 689 861 0.781
8 domains 304 406 507 0.663
1 domain 1614 2153 2691

Note.Unsteady problem withLo= 2(CFL+ 1)= 12. Lerat scheme
on the coarse grid.

the single domain case (overlapping efficiency close to 0), the parallel computation using
the Lerat scheme is sometimes capable of recovering the same convergence speed as the
single domain case, i.e., the parallel efficiency is sometimes close to 1.

(2) For the implicit upwind scheme and the steady state problem, the optimal overlap-
ping width is always equal toLo= 2, which confirms exactly the linear study. The parallel
efficiency is independent of the CFL number.

(3) Since the Thomas algorithm for inverting the implicit tridiagonal system is un-
changed with respect to a code for sequential computation, the parallel efficiencyEp or Ē p

we present here is the absolute one. The parallel efficiencies we obtained lie in the range of
(0.5, 1.0) for both steady and unsteady problems. This result is acceptable since we have
used the definition of absolute parallel efficiency, a very simple interface treatment, and a
very small grid.

(4) For the Lerat scheme and the steady state problem, the parallel efficiency is a
decreasing function of the number of subdomains. This is not due to the inefficiency of the
interface treatment, but essentially due to the decreasing of the number of mesh points in
each subdomain. We note that the total number of mesh points, when the additional points
due to overlapping are not taken into account, remains fixed independently of the number of
subdomains. The total number of mesh points in each subdomain is inversely proportional
to the number of subdomains. As a result, the communication time between processors

TABLE XXXI

Parallel Efficiency Ep (Based on the Wall Clock Time) vs

the Number of Subdomains

90◦ 120◦ 150◦

Twc Twc Twc Ē p

2 domains 6246 8328 10410 0.977
4 domains 3585 4780 5976 0.851
6 domains 2624 3499 4374 0.775
8 domains 2132 2842 3553 0.714
12 domains 1627 2170 2712 0.625
Single domain 12199 16265 20331

Note.Unsteady problem withLo= 2(CFL+ 1)= 12. Lerat scheme on
the fine grid.
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becomes relatively important when the number of subdomains increases. For example, when
there are 8 subdomains, there are only 124/8= 15 mesh points in the direction normal to
the interface. The cost due to overlapping is therefore large in comparison with the total
CPU time. The situation can obviously be imporved once a finer grid is used, as can be seen
from Table XV (based on the fine grid) and from Table XIV (based on the coarse grid).
Such a test, with the total number of meshes maintained fixed and small, is indeed the worst
case for parallel compuation. In real applications, the size of the mesh is either very large
or proportional to the number of processors. The parallel efficiency for real applications
should be greater than those given by the present calculations. Here the parallel computation
is just for testing the numerical efficiency of the easily workable interface treatments.

5. CONCLUSIONS

In this paper we have considered parallel computations for three-point implicit schemes
by grid overlapping. We have derived, analyzed, and validated:

(1) some time-lagging interface treatments suitable for parallel computations of steady
state problems;

(2) an overlapping/projection interface treatment suitable for parallel computations of
unsteady problems.

These interface treatments are very simple to use. They need no iterations at each time
step, or modification of the implicit solver (tridiagonal systems inverted by approximation
factorization and the Thomas algorithm). Both treatments lie in the correct choice of an
overlapping width. Though they are apparently very simple, the following key points should
be kept in mind:

(1) The interior difference equations must be sufficiently dissipative in order to have
a good convergence speed for the steady state problems. Of course, one rarely uses a
nondissipative scheme for steady state computations.

(2) Among the various possible time-lagging treatments, only the totally time-lagging
condition behaves always very well with regard to stability, convergence. For unsteady
problems, the time-accurate time-lagging condition produces a result as accurate as the
single domain computation. But the totally time-lagging condition also yields acceptable
results in the nontrivial two dimensional cases.

(3) The choice of the overlapping width is scheme-dependent. For the Lerat scheme,
the optimal one is close to the CFL number. For the upwind scheme, the optimal overlapping
width is equal to 2.

(4) Though the present numerical experiments demonstrate a good absolute parallel
efficiency for both steady and unsteady problems, this parallel efficiency is expected to be
better in the case of real applications where the number of mesh points is very large in
comparison with the CFL number.

APPENDIX A: REMARK ON CONSERVATION

It was believed that conservation at grid interfaces was important for a nonlinear system of
conservation laws with discontinuous solutions (shock waves). When spatial interpolation is
involved, Berger’s flux interpolation [1] leads to conservative solutions; see also [4, 16] for



GRID OVERLAPPING FOR PARALLEL COMPUTATIONS 41

subsequent studies. Conservation is important only when a shock wave approaches a grid
interface. A recent study [23] based on shock/interface interaction shows that if the interior
difference equations are sufficiently dissipative or the shock speed is sufficiently large, then a
nonconservative treatment also works. Most of the schemes currently used for shocked flow
computations have enough of an amount of dissipation for the computation to yield a correct
shock position. For the present problem interpolation in time (in fact the time-lagging treat-
ment is an extrapolation in time) is involved, and the result of [23] remains valid; that is, for
a difference scheme whose interior dissipation near the shock is not too much smaller than
that of the standard first-order Roe scheme, then a shock wave will successfully transmit
the overlapping interface. This is the case for first-order upwind schemes, MUSCL schemes
with limiters, TVD schemes, NND [24] schemes, schemes equipped with nonlinear filters
or other kinds of artificial dissipation. Besides, the overlapping/projection interface treat-
ment for unsteady problems has an additional projection which is similar to the penetrator
constructed in [23]. This penetrator forces shock/interface transmission in all cases.

APPENDIX B: PRACTICAL ASPECTS OF THE PRESENT OVERLAPPING METHOD

B.1. Simplicity of the present method.The present method presents the following ad-
vantages:

(1) The present method can be quite easily incorporated into an existing sequential
code in order to do parallel computations. It does not require any modification of the
algorithm for inverting the implicit system. The interface conditions are as simple as (in
fact simpler than) an ordinary boundary condition.

(2) The parallel tridiagonal solver [20] requires a thourough modification of the orig-
inal Thomas algorithm for inverting the tridiagonal system. It requires 50% more CPU
time than the original Thomas algorithm. As a result, the absolute parallel efficiency
Ep<

1
1+0.50 ≈ 0.67.

(3) For elliptical problems, there exist the well-known Schwartz and Schur Comple-
ment methods [2]. These methods are often based on the differential equations. Precisely,
the domain decomposition is done on the differential equations. The resulting problem is
then discretized by a finite element method or other methods. This is different than the
present approach where the domain decomposition is done on the difference equations. The
original Schwartz algorithm needs some iterations at each time step. The Schur complement
method needs to solve a subsystem inherient to the accurate interface treatment.

B.2. For steady state computations, one does not need to absolutely use the optimal
overlapping width. The apparent shortcoming is that when using high CFL numbers, one
needs to add a high overlapping width which obviously leads to high storage and more CPU
time. In fact, one does not need to absolutely take the optimal overlapping width.

(1) For schemes behaving similarly as the Lerat scheme, though optimal convergence
occurs (theoretically) forLo=CFL, one can still take an overlapping width as short as he
likes if his main concern is storage. Besides, numerical experiments show that very good
convergence also occurs at short overlapping width.

(2) For upwind schemes, the best convergence occurs atLo= 2 so that both storage
and CPU time are the minimal. The only restriction is that we should use the standard
(totally time-lagging) interface condition.
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B.3. For unsteady problems, the CFL number should not be too large by the accuracy
consideration. Unsteady problems can be classified into two classes: fast unsteady flow
and slowly unsteady flow. For fast unsteady flow, one can simply use Range–Kutta type
explicit schemes. The implicit method is mainly useful for slowly unsteady flow. The
implicitation is used to increase the physical time step in order to reduce the computational
time. But if we takeLo= 2(CFL+ 1), then it appears that the overall performance with
regard to CPU time and storage appears poor. However, if we keep in mind that the method
is designed for parallel computation, then this disadvantage is largely compensated by its
advantage because of the following reasons.

(1) Unlike the steady state problems where we seek large CFL numbers to increase
the convergence speed, in the unsteady case we still require the CFL number to be not too
large in order to have a good time accuracy. This is even so for single domain treatments.
In computations of unsteady flow using implicit schemes, one typically uses a CFL number
of the order of 10 even for single domain (processor) computations.

(2) A parallel computation for real applications is not done on a small grid. It is
generally used for the purpose of handling large size problems in a reasonable time. The
number of mesh points in each subdomain and per direction, denotedNp for convenience,
should be large enough since each processor is fast enough to handle such a subdomain. If
we keep the ratio CFL/Np ¿ 1, as should be so in real applications, the additional time
and storage wasted in the overlap is still negligible. As a result, ifNp is high (as is the case
for the parallel computation purpose), we may still use high CFL numbers. IfNp is small,
one can simply use an explicit method which is stable for a CFL of order 1.
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